3.2 \(\int \frac {\sqrt {d \cos (e+f x)}}{(a+b \cos (e+f x)) \sqrt {g \sin (e+f x)}} \, dx\)

Optimal. Leaf size=209 \[ \frac {2 \sqrt {2} \sqrt {d} \sqrt {\sin (e+f x)} \Pi \left (-\frac {a}{b-\sqrt {b^2-a^2}};\left .\sin ^{-1}\left (\frac {\sqrt {d \cos (e+f x)}}{\sqrt {d} \sqrt {\sin (e+f x)+1}}\right )\right |-1\right )}{f \sqrt {b^2-a^2} \sqrt {g \sin (e+f x)}}-\frac {2 \sqrt {2} \sqrt {d} \sqrt {\sin (e+f x)} \Pi \left (-\frac {a}{b+\sqrt {b^2-a^2}};\left .\sin ^{-1}\left (\frac {\sqrt {d \cos (e+f x)}}{\sqrt {d} \sqrt {\sin (e+f x)+1}}\right )\right |-1\right )}{f \sqrt {b^2-a^2} \sqrt {g \sin (e+f x)}} \]

[Out]

2*EllipticPi((d*cos(f*x+e))^(1/2)/d^(1/2)/(1+sin(f*x+e))^(1/2),-a/(b-(-a^2+b^2)^(1/2)),I)*2^(1/2)*d^(1/2)*sin(
f*x+e)^(1/2)/f/(-a^2+b^2)^(1/2)/(g*sin(f*x+e))^(1/2)-2*EllipticPi((d*cos(f*x+e))^(1/2)/d^(1/2)/(1+sin(f*x+e))^
(1/2),-a/(b+(-a^2+b^2)^(1/2)),I)*2^(1/2)*d^(1/2)*sin(f*x+e)^(1/2)/f/(-a^2+b^2)^(1/2)/(g*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 209, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {2908, 2907, 1218} \[ \frac {2 \sqrt {2} \sqrt {d} \sqrt {\sin (e+f x)} \Pi \left (-\frac {a}{b-\sqrt {b^2-a^2}};\left .\sin ^{-1}\left (\frac {\sqrt {d \cos (e+f x)}}{\sqrt {d} \sqrt {\sin (e+f x)+1}}\right )\right |-1\right )}{f \sqrt {b^2-a^2} \sqrt {g \sin (e+f x)}}-\frac {2 \sqrt {2} \sqrt {d} \sqrt {\sin (e+f x)} \Pi \left (-\frac {a}{b+\sqrt {b^2-a^2}};\left .\sin ^{-1}\left (\frac {\sqrt {d \cos (e+f x)}}{\sqrt {d} \sqrt {\sin (e+f x)+1}}\right )\right |-1\right )}{f \sqrt {b^2-a^2} \sqrt {g \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d*Cos[e + f*x]]/((a + b*Cos[e + f*x])*Sqrt[g*Sin[e + f*x]]),x]

[Out]

(2*Sqrt[2]*Sqrt[d]*EllipticPi[-(a/(b - Sqrt[-a^2 + b^2])), ArcSin[Sqrt[d*Cos[e + f*x]]/(Sqrt[d]*Sqrt[1 + Sin[e
 + f*x]])], -1]*Sqrt[Sin[e + f*x]])/(Sqrt[-a^2 + b^2]*f*Sqrt[g*Sin[e + f*x]]) - (2*Sqrt[2]*Sqrt[d]*EllipticPi[
-(a/(b + Sqrt[-a^2 + b^2])), ArcSin[Sqrt[d*Cos[e + f*x]]/(Sqrt[d]*Sqrt[1 + Sin[e + f*x]])], -1]*Sqrt[Sin[e + f
*x]])/(Sqrt[-a^2 + b^2]*f*Sqrt[g*Sin[e + f*x]])

Rule 1218

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-(c/a), 4]}, Simp[(1*Ellipt
icPi[-(e/(d*q^2)), ArcSin[q*x], -1])/(d*Sqrt[a]*q), x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 2907

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]))
, x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Dist[(2*Sqrt[2]*d*(b + q))/(f*q), Subst[Int[1/((d*(b + q) + a*x^2
)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x] - Dist[(2*Sqrt[2]*d*(b - q))/(f*
q), Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]],
x]] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2908

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(
x_)])), x_Symbol] :> Dist[Sqrt[Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]], Int[Sqrt[d*Sin[e + f*x]]/(Sqrt[Cos[e + f*x]
]*(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {d \cos (e+f x)}}{(a+b \cos (e+f x)) \sqrt {g \sin (e+f x)}} \, dx &=\frac {\sqrt {\sin (e+f x)} \int \frac {\sqrt {d \cos (e+f x)}}{(a+b \cos (e+f x)) \sqrt {\sin (e+f x)}} \, dx}{\sqrt {g \sin (e+f x)}}\\ &=-\frac {\left (2 \sqrt {2} \left (1-\frac {b}{\sqrt {-a^2+b^2}}\right ) d \sqrt {\sin (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-\left (-b+\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \cos (e+f x)}}{\sqrt {1+\sin (e+f x)}}\right )}{f \sqrt {g \sin (e+f x)}}-\frac {\left (2 \sqrt {2} \left (1+\frac {b}{\sqrt {-a^2+b^2}}\right ) d \sqrt {\sin (e+f x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\left (-\left (-b-\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \cos (e+f x)}}{\sqrt {1+\sin (e+f x)}}\right )}{f \sqrt {g \sin (e+f x)}}\\ &=\frac {2 \sqrt {2} \sqrt {d} \Pi \left (-\frac {a}{b-\sqrt {-a^2+b^2}};\left .\sin ^{-1}\left (\frac {\sqrt {d \cos (e+f x)}}{\sqrt {d} \sqrt {1+\sin (e+f x)}}\right )\right |-1\right ) \sqrt {\sin (e+f x)}}{\sqrt {-a^2+b^2} f \sqrt {g \sin (e+f x)}}-\frac {2 \sqrt {2} \sqrt {d} \Pi \left (-\frac {a}{b+\sqrt {-a^2+b^2}};\left .\sin ^{-1}\left (\frac {\sqrt {d \cos (e+f x)}}{\sqrt {d} \sqrt {1+\sin (e+f x)}}\right )\right |-1\right ) \sqrt {\sin (e+f x)}}{\sqrt {-a^2+b^2} f \sqrt {g \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 9.69, size = 594, normalized size = 2.84 \[ \frac {2 \sqrt {\tan (e+f x)} \sec ^2(e+f x) \sqrt {d \cos (e+f x)} \left (a \sqrt {\tan ^2(e+f x)+1}+b\right ) \left (\frac {5 b \left (a^2-b^2\right ) \sqrt {\tan (e+f x)} F_1\left (\frac {1}{4};\frac {1}{2},1;\frac {5}{4};-\tan ^2(e+f x),-\frac {a^2 \tan ^2(e+f x)}{a^2-b^2}\right )}{\sqrt {\tan ^2(e+f x)+1} \left (a^2 \left (\tan ^2(e+f x)+1\right )-b^2\right ) \left (2 \tan ^2(e+f x) \left (2 a^2 F_1\left (\frac {5}{4};\frac {1}{2},2;\frac {9}{4};-\tan ^2(e+f x),-\frac {a^2 \tan ^2(e+f x)}{a^2-b^2}\right )+\left (a^2-b^2\right ) F_1\left (\frac {5}{4};\frac {3}{2},1;\frac {9}{4};-\tan ^2(e+f x),-\frac {a^2 \tan ^2(e+f x)}{a^2-b^2}\right )\right )-5 \left (a^2-b^2\right ) F_1\left (\frac {1}{4};\frac {1}{2},1;\frac {5}{4};-\tan ^2(e+f x),-\frac {a^2 \tan ^2(e+f x)}{a^2-b^2}\right )\right )}+\frac {\sqrt {a} \left (-2 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {a} \sqrt {\tan (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )+2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {a} \sqrt {\tan (e+f x)}}{\sqrt [4]{a^2-b^2}}+1\right )-\log \left (-\sqrt {2} \sqrt {a} \sqrt [4]{a^2-b^2} \sqrt {\tan (e+f x)}+\sqrt {a^2-b^2}+a \tan (e+f x)\right )+\log \left (\sqrt {2} \sqrt {a} \sqrt [4]{a^2-b^2} \sqrt {\tan (e+f x)}+\sqrt {a^2-b^2}+a \tan (e+f x)\right )\right )}{4 \sqrt {2} \left (a^2-b^2\right )^{3/4}}\right )}{f \left (\tan ^2(e+f x)+1\right )^{3/2} \sqrt {g \sin (e+f x)} (a+b \cos (e+f x))} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[d*Cos[e + f*x]]/((a + b*Cos[e + f*x])*Sqrt[g*Sin[e + f*x]]),x]

[Out]

(2*Sqrt[d*Cos[e + f*x]]*Sec[e + f*x]^2*Sqrt[Tan[e + f*x]]*(b + a*Sqrt[1 + Tan[e + f*x]^2])*((Sqrt[a]*(-2*ArcTa
n[1 - (Sqrt[2]*Sqrt[a]*Sqrt[Tan[e + f*x]])/(a^2 - b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[a]*Sqrt[Tan[e + f*x
]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]] + a*Tan[e
+ f*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]] + a*Tan[e + f*x]]))/(4*Sq
rt[2]*(a^2 - b^2)^(3/4)) + (5*b*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, -Tan[e + f*x]^2, -((a^2*Tan[e + f*x]^2)
/(a^2 - b^2))]*Sqrt[Tan[e + f*x]])/(Sqrt[1 + Tan[e + f*x]^2]*(-5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, -Tan[e
 + f*x]^2, -((a^2*Tan[e + f*x]^2)/(a^2 - b^2))] + 2*(2*a^2*AppellF1[5/4, 1/2, 2, 9/4, -Tan[e + f*x]^2, -((a^2*
Tan[e + f*x]^2)/(a^2 - b^2))] + (a^2 - b^2)*AppellF1[5/4, 3/2, 1, 9/4, -Tan[e + f*x]^2, -((a^2*Tan[e + f*x]^2)
/(a^2 - b^2))])*Tan[e + f*x]^2)*(-b^2 + a^2*(1 + Tan[e + f*x]^2)))))/(f*(a + b*Cos[e + f*x])*Sqrt[g*Sin[e + f*
x]]*(1 + Tan[e + f*x]^2)^(3/2))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))^(1/2)/(a+b*cos(f*x+e))/(g*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d \cos \left (f x + e\right )}}{{\left (b \cos \left (f x + e\right ) + a\right )} \sqrt {g \sin \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))^(1/2)/(a+b*cos(f*x+e))/(g*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*cos(f*x + e))/((b*cos(f*x + e) + a)*sqrt(g*sin(f*x + e))), x)

________________________________________________________________________________________

maple [B]  time = 0.26, size = 608, normalized size = 2.91 \[ -\frac {\sqrt {d \cos \left (f x +e \right )}\, \left (2 \EllipticF \left (\sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a^{2}+b^{2}}+a \EllipticPi \left (\sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {a -b}{a -b +\sqrt {-\left (a -b \right ) \left (a +b \right )}}, \frac {\sqrt {2}}{2}\right )-\EllipticPi \left (\sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {a -b}{a -b +\sqrt {-\left (a -b \right ) \left (a +b \right )}}, \frac {\sqrt {2}}{2}\right ) b -\sqrt {-a^{2}+b^{2}}\, \EllipticPi \left (\sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {a -b}{a -b +\sqrt {-\left (a -b \right ) \left (a +b \right )}}, \frac {\sqrt {2}}{2}\right )-a \EllipticPi \left (\sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, -\frac {a -b}{-a +b +\sqrt {-\left (a -b \right ) \left (a +b \right )}}, \frac {\sqrt {2}}{2}\right )+\EllipticPi \left (\sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, -\frac {a -b}{-a +b +\sqrt {-\left (a -b \right ) \left (a +b \right )}}, \frac {\sqrt {2}}{2}\right ) b -\sqrt {-a^{2}+b^{2}}\, \EllipticPi \left (\sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, -\frac {a -b}{-a +b +\sqrt {-\left (a -b \right ) \left (a +b \right )}}, \frac {\sqrt {2}}{2}\right )\right ) \sqrt {\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \left (\sin ^{2}\left (f x +e \right )\right ) \sqrt {2}\, a}{f \sqrt {g \sin \left (f x +e \right )}\, \cos \left (f x +e \right ) \left (-1+\cos \left (f x +e \right )\right ) \sqrt {-a^{2}+b^{2}}\, \left (\sqrt {-a^{2}+b^{2}}+a -b \right ) \left (-a +b +\sqrt {-a^{2}+b^{2}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*cos(f*x+e))^(1/2)/(a+b*cos(f*x+e))/(g*sin(f*x+e))^(1/2),x)

[Out]

-1/f*(d*cos(f*x+e))^(1/2)*(2*EllipticF(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-a^2+b^2)^(1
/2)+a*EllipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),(a-b)/(a-b+(-(a-b)*(a+b))^(1/2)),1/2*2^(1/2))-El
lipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),(a-b)/(a-b+(-(a-b)*(a+b))^(1/2)),1/2*2^(1/2))*b-(-a^2+b^
2)^(1/2)*EllipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),(a-b)/(a-b+(-(a-b)*(a+b))^(1/2)),1/2*2^(1/2))
-a*EllipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),-(a-b)/(-a+b+(-(a-b)*(a+b))^(1/2)),1/2*2^(1/2))+Ell
ipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),-(a-b)/(-a+b+(-(a-b)*(a+b))^(1/2)),1/2*2^(1/2))*b-(-a^2+b
^2)^(1/2)*EllipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),-(a-b)/(-a+b+(-(a-b)*(a+b))^(1/2)),1/2*2^(1/
2)))*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((1-cos(f*x+e)+sin(f*x+e
))/sin(f*x+e))^(1/2)*sin(f*x+e)^2/(g*sin(f*x+e))^(1/2)/cos(f*x+e)/(-1+cos(f*x+e))*2^(1/2)*a/(-a^2+b^2)^(1/2)/(
(-a^2+b^2)^(1/2)+a-b)/(-a+b+(-a^2+b^2)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d \cos \left (f x + e\right )}}{{\left (b \cos \left (f x + e\right ) + a\right )} \sqrt {g \sin \left (f x + e\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))^(1/2)/(a+b*cos(f*x+e))/(g*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*cos(f*x + e))/((b*cos(f*x + e) + a)*sqrt(g*sin(f*x + e))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {d\,\cos \left (e+f\,x\right )}}{\sqrt {g\,\sin \left (e+f\,x\right )}\,\left (a+b\,\cos \left (e+f\,x\right )\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*cos(e + f*x))^(1/2)/((g*sin(e + f*x))^(1/2)*(a + b*cos(e + f*x))),x)

[Out]

int((d*cos(e + f*x))^(1/2)/((g*sin(e + f*x))^(1/2)*(a + b*cos(e + f*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d \cos {\left (e + f x \right )}}}{\sqrt {g \sin {\left (e + f x \right )}} \left (a + b \cos {\left (e + f x \right )}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(f*x+e))**(1/2)/(a+b*cos(f*x+e))/(g*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(d*cos(e + f*x))/(sqrt(g*sin(e + f*x))*(a + b*cos(e + f*x))), x)

________________________________________________________________________________________